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Chapter 1

INTRODUCTION

1.1 Background

Past and proposed future flights of space shuttles have brought the

world into the era of space transportation. In the near future, large

space structures will be placed in earth orbits. Two basic classes of

orbiting large space structures proposed for communications, earth ob-

servation and remote sensing are large antennas and space platforms.

Figure 1, [1] , shows an artist's depiction of a large antenna in earth

orbit.

To assure satisfactory performance of orbiting structures, analyses

of structural integrity and stability are required. These analyses

include prediction of structural deformations introduced by cyclic heat-

ing on the structure during the orbit. The deformations must be kept

within design allowable tolerances to assure satisfactory structural

performance. Due to the large size of these structures, ground testing

is not possible, and thus reliable analyses are required to predict

structural deformations accurately.

To increase the structural stability and to provide additional

stiffness to the structural system, the concept of prestressed,

*The numbers in brackets indicate references.
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Fig. 1 An artist's depiction of a large antenna in earth orbit Li].
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cables and membranes have been proposed for some designs [1-3]. Pre-

stressed structures, such as the hoop colunn antenna, shown in Fig. 2,

[1), can provide ease of deployment while maintaining low mass and

stability. Cable-stiffened space structures are difficult to analyze

because: (1) all members have prestresses, (2) cables cannot take com-

pressive forces, and (3) large deformations may be experienced. For

large structures with cables, it is possible that displacements may be

large, due to on-orbit loads. This introduces nonlinear effects which

should be considered for the structural analysis to predict deformations

accurately.

Prediction of structural deformations depends primarily on the

accuracy of the heating, thermal and structural analyses techniques

adopted. Finite-element methods are used extensively for such thermal

and structural problems [4]. Finite element methods are used extensive-

ly for linear type structural analysis with codes such as NASTRAN and

ANSYS. These codes have limited capability for structural analysis of

cable-stiffened structures with member prestress. The ANSYS finite-

element structural analysis program uses a "stress-stiffening technique"

for prestressed structures. Many existing finite element codes do not

have capability for the determination of prestress for the structural

analysis of cable-stiffened structures.

1.2 Literature Review

To predict the displacements caused by on-orbit heat loads, three

steps are required: (1) calculation of heat loads, (2) calculation of

3



Fig. 2 A cable-stiffened hoop co] iuin antenna []
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temperatures, and (3) calculation of displacements and stresses due to

the temperature distribution in the structure. These tasks have been

the subject of recent research.

Mahaney and Strode [5] present a clear description of the heat load

calculation on orbiting structures. The calculation of structural temp-

eratures at different points in the orbit is a transient problem often

based on simplifying assumptions. Arduini [6] presents a discussion of

the accuracy of thermal analyses by citing uncertainties in calculation

of view factors, member-to-member shadowing, member-to-member radiation

exchange, and conductivity calculation of composite materials.

Chanbers, Jensen and Coyner [7] describe a thermal analysis approach

consisting of the MIDAS/TRASYS programs in which solar shadowing includ-

ing umbra-penunbra effects and circumferential gradients in element

temperatures are considered.

Thermal-structural analysis of space structures without prestresses

in members has been discussed in many papers. Reference [8] presents an

integrated finite element thermal structural analysis technique to pre-

dict deformation and stresses. In reference [5] a tetrahedral truss has

been analyzed for on-orbit heating, and it has been shown that defor-

mation of the structure is significant. Bowles and Tenney [9] discuss

the thermal expansion of the composite materials proposed for large

space structures and show that thermal loads have significant effects on

the structural deformation.

Cables are proposed for many space structures including the Hoop

Column Antenna [1], Stayed Coluinn [2], Mechanically Scanned Deployable
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Antenna (MSDA) [3], Cable Boom System [10], Lunar Anchored Satellite

[11], Geosynchronous Tidal Web [12], and Space Elevators [13]. Struc-

tural analyses of some of the above space structures that have preten-

sioned cable elements have been presented in references [1, 3]. Ther-

mal-structural analysis of the MSDA [3] is performed using NASTRAN, and

ANSYS is used for analysis of the antenna mesh using the stress stiffen-

ing technique. The effect of prestresses in the structure on the struc-

tural analysis has not been investigated.

Conaway [14] presents a comparison between linear and geometrically

nonlinear finite-element structural analysis of some simple structures

and shows that nonlinear behavior should be taken into consideration in

structural analysis.

Classical cable structures are considered in a book by Irvine [15].

Analytical solutions of cable structures are given, including deflection

of a catenary due to thermal loading. Baron and Venkatesan [16] present

analyses of geometrically nonlinear structures composed of elastic mem-

bers capable of resisting axial forces only. Cable prestresses have not

been included in this analysis. Cable-stiffened space structures are

different from classical cable structures because: (1) gravity loads

are negligible in space, (2) they have negligible mechanical loads, and

(3) cables have pretensions.

1.3 Objectives

The literature review has indicated that little information is

available on the thermal-structural behavior of orbiting prestressed

6



structures. The present work concentrates on the investigation of three

finite element structural analysis techniques and the effect of pre-

stress on the accuracy of the techniques. To predict the structural

deformations of cable-stiffened structures and to compare the different

structural analysis techniques, the following specific objectives are

considered:

1. Development of a computational technique to perform the pre-

stress analysis of a space structure,

2. Development of alternative thermal-structural analysis tech-

niques for cable-stiffened orbiting space structures, and

3. Evaluation and identification of the most suitable analysis for

cable-stiffened large space structures.

To meet the objectives mentioned above, finite element methods are

used to perform the various analyses. Chapter 2 describes heating and

thermal analyses. The prestress analysis is presented in Chapter 3.

Chapters 4, 5, and 6 describe three approaches for performing the ther-

mal-structural analysis for cable-stiffened structures. Chapter 7 veri-

fies the structural analyses techniques by analyzing two simple problems

for which analytical solutions are known. Typical results of thermal-

structural analysis of a two-dimensional pretensioned cable system and

three-dimensional hoop columin antenna are presented in Chapter 8. Based

on these analyses, the three structural analyses techniques are discuss-

ed and evaluated. Appendices A and B contain finite element matrices

for the two nonlinear structural analysis techniques.

7



Chapter 2

HEATING AND THERMAL ANALYSES

Wring orbit, structural deformations and thermal stresses are

produced due to environmental heating. To perform the structural ana-

lysis, the structural temperature distribution is needed to compute the

thermally equivalent nodal forces. The structural temperature distri-

bution can be computed if the environmental heating is known. The com-

putational approach used for heating and thermal analyses are explained

in this chapter. The computational approach is highlighted herein,

further details are presented in [5].

2.1 Heating Analysis

The environmental heat sources applied to the space structure are

solar heating, earth emitted heating and earth reflected solar heating.

Earth emitted heating and earth reflected solar heating depend on alti-

tude and orientation of the structure. The total incident heat load q

(per unit area) on the structure is given by

q = qs + qe + q a (2.1)

where qs, qe and qa are the incident solar heating, incident

earth emitted heating and earth reflected solar heating, respectively.
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The incident solar heating qs, is given by the product of the solar

flux, surface absorbtivity for solar radiation (a s) and cosine of angle

(*) between the solar flux vector and the structure surface normal as

follows:

qs = 1390 (W/mn) as cos p. (2.2)

The earth emitted heating qe is a function of the Stefan-

Boltzmann constant (a), surface absorbtivity for earth radiation (a e), a

view factor (F) and the temperature of the earth (T e), which is assumed

to be constant at 289K:

q = a e F Te4 (2.3)

The view factor F is defined as the fraction of total radiant energy

leaving the earth that arrives at the structural surface.

The earth reflected solar heating qa depends on the solar flux

in earth orbit, solar albedo factor (AF), a view factor (F), the surface

absorbtivity for solar radiation (as ) and orientation angle (6):

qa = 1390 (W/m?) (AF) (F) (as) col 8. (2.4)

The solar albedo factor is defined as the fraction of solar radiation

striking the earth that is reflected back into space.

If the structure enters the earth's shadow during the orbit, the

heating on the structure is greatly reduced due to the absence of solar

9



heating. The duration of the shadowing depends upon the altitude of the

orbit. Although the shadow portion of the orbit has two regions, name-

ly, umbra and penumbra, the transit time through the penumbra is very

small and can be neglected. The present study uses a geosynchronous

orbit (GEO) which has an altitude of 42000 km. The heating on a member

depends strongly on a member's orientation with respect to the solar

vector and, consequently, may vary significantly from member to member

and with time during the orbit. The calculation of the structural heat

load is performed at different orbital positions which may be specified.

The results are used for the structural thermal analysis described in

the following section.

2.2 Thermal Analysis

Once the heat load on the structural member has been determined,

the structural temperature distribution at different orbital positions

can be computed. Basic types of heat transfer for a typical space

structure element are member conduction and surface radiation. The heat

transfer problem also involves member-to-member heat radiation ex-

changes, shadowing of one member by another and temperature gradients

along the length, through the thickness and around the circumference of

a member. Member-to-member radiation exchanges are negligible [5] com-

pared to incident and emitted radiation, so they are disregarded. Shad-

owing of one member by other members is very complicated and expensive.

It has not been determined if a detailed shadowing analysis is necessary

to predict structural deformations accurately. For the current studies,

10



member to member shadowing will be disregarded. For simplicity, temper-

ature gradients through the thickness of a member will be disregarded.

This latter assumption is a very good approximation for the thin cables

of graphite epoxy considered in this study.

With these assumptions the governing differential equation for a

structural member is

aT 9T]P c VT + r A - a aT C -kA as A q(t) (2.5)
at sax

where the terms on the left hand side of the equation represent energy

stored in the member by thermal capacitance and the temperature change

of element with respect to time, the energy emitted due to radiation and

heat transfer due to conduction. The right hand side term is the inci-

dent heat load, which is a function of time. In the above equation p

is density, c is specific heat, V is the member volume, a is the

Stefan-Boltzmann constant, c is surface emissivity, Ar is the

element radiation area, k is the thermal conductivity, and A is the

member cross sectional area. On the right hand side as is the sur-

face absorbtivity, Aq is the incident heating area, and q(t) is the

incident heating rate per unit area.

For a structure made from composite materials such as graphite

epoxy, heat transfer from one member to another by conduction is small

compared to structures made of metallic members such as aluminum, due to

the low thermal conductivity of composite materials. Thus for composite

11



materials the temperature is nearly uniform along the element length.

For this case Eq. (2.5) reduces to:

p c V -T + a E Ar T4 = as Aq q(t) (2.6)
at

This differential equation is used to formulate an isothermal fi-

nite element. With this concept, element temperatures for each member

can be computed independently. A typical equation is solved using the

Crank-Nicholson finite difference technique for transient time marching

and Newton-Raphson iteration at each time step. The temperature distri-

bution of the structure may be determined at each time step for the

entire orbit in this manner.
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Chapter 3

PRESTRESS ANALYSIS

Many proposed large space structures use prestressed elements such

as cables and rods to provide stiffness and stability of the structural

system. Reference [1] presents details of a cable stiffened hoop column

antenna. A prestress analysis is required for such structures before

performing a structural analysis, to determine the tensile (or compres-

sive) forces and stresses in each member. The basic requirements for

the prestress analysis are that the structure: (1) maintain the

required geometry, and (2) be in static equilibrium. This chapter

describes the theoretical development for the prestress analysis used in

this study and presents an example of a simple analysis.

3.1 Theoretical Development

For a given geometry, the equilibrium equations for a truss-type

structure at each joint are:

EF = 0x

EF = 0
y

:F = 0
z

where Fx, Fy and Fz are member force component- in Cartesian

13



coordinates. For a structure with n joints there are, therefore, 3n

equilibri um equations for the entire structure. For a truss-type struc-

ture with m members, there are m unknown member forces, Fi, i =

1, 2,..m, and the above equations can be written in matrix form as:

Bil B12  .Bm F1  0

B21 B2 2  . . B2m F2 0
- 0

B (3n)1 B(3n)1 B . .(3n)m Fm 0

(3n * m) (m*l) (3n*1)

or

[B]{F} = {0} (3.1)

In the above equation, [B] contains direction cosines of the members,

and {F} in an unknown vector which contains element forces. The right-

hand side vector is a null vector.

Since some of the member forces are specified, the corresponding

columns in [B] matrix are multiplied by the specified forces and trans-

ferred to the right-hand side of the equation. Depending on the total

number of equations and total number of unknown member forces, either

additional forces are specified, or extra equations are discarded to

provide the number of equations equal to the number of unknowns. In

implementing this approach in the computer program, the equilibrium

equations are not written at fixed joints. For some structures, if

equations are written at all free joints then the number of equations

14



becomes more than the number of unknowns. For such problems, additional

joints are fixed in order to provide the number of equations equal to

the number of unknowns. If the total number of unknown member forces is

more than the total number of equations then additional member forces

need to be specified. This results in the following matrix equation:

[BM] {P}= {R} (3.2)
jxj jxl jxl

where j is the total number of unknown member forces to be determined.

[BM] is the modified form of the [B] matrix after imposing the known

member forces, {P} is the unknown member force vector, and {R} is

the load vector. Equation (3.2) is a linear set of simultaneous equa-

tions that can be solved directly for the unknown member forces.

The number of unknowns shown in Eq. (3.2) can be reduced if the

structure has geometric symmetry. In this case, both members and nodes

which are synmetric are first identified. The synmetrical elements

produce identical member forces and the symmetrical nodes generate

identical equations. The use of synmetry reduces the number of equa-

tions to be solved.

An analysis of a structure with synmetry is performed by grouping

all identical members in one element group. This reduces the total

number of element groups. Similarly, the synmetrical nodes, which gen-

erate identical equations, are grouped in one nodal group. Equilibrium

equations are written for each nodal group.

The final linear simultaneous equations which contain forces for

15



different element groups can then be solved using the procedures pre-

viously described. Equation (3.1) is written where the size of [B] is

given by (3 * nodal group)* (element group); and {F} is a vector con-

taining the total number of element group forces. To clarify these

procedures an example of a prestress analysis for a synmetrical struc-

ture is presented in the next section.

3.2 Example

Figure 3 shows a planar two-dimensional structure with six nodes

and five members. Nodes 1, 2, 5 and 6 are fixed where nodes 3 and 4 are

free. Symmetry may be used in solving for the member forces. To main-

tain the structure in the geometry shown, the forces in members 1 and 5

are identical and similar with the forces in members 2 and 4. Members 1

and 5 are grouped in element group two. Member 3 is placed in element

group three. Nodes 3 and 4 which are free nodes generate identical

equations. Thus nodes 3 and 4 are kept in nodal group one. Nodes 1, 2,

5 and 6 are grouped in nodal group two. At this point, there are two

equations corresponding to nodal group one, and three unknowns corre-

sponding to each element group.

The equilibrium equations obtained from node 3 from nodal group one

are,

-F1 cosO1 + F2 cos02 + F3 cos90° = 0

and F, sine1 + F2 sin02 - F3 sin90° = 0

16



Symmetry Plane

Fig. 3 A two-dimensional symetric structure for prestress analysis.
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where F1 , F2 , F3  are forces for element groups 1, 2 and 3 respec-

tively. These can be written in matrix form as,

Lsinei si n62 -1 F =0E~~~ ~ -cs1 C5 2 0 F31

If F3  is specified then the above matrix equation reduces to,

cosel cos 21 2 0

L sine, sin F2eF

With two equations, the unknowns forces F, and F2  for element groups

1 and 2 can be solved. Therefore, all the element forces can be obtain-

ed. Once the forces in each member have been determined, the stresses

are computed.

Figure 4 shows a flowchart of the prestress analysis program.

Nodal coordinates, element connections and syminetry data are read first.

The program calculates the total number of unknowns and total number of

equations. If the specified forces are not sufficient, the program

prints a message in the output file and stops. Equation (3.2) is

formulated directly and unknown forces are solved. The program

calculates and writes the member stresses on the output file, which are

used for the structural analysis as member prestresses.
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OUTPUT FILE
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Fig. 4 Flowhart of the prestress analysis program.
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Chapter 4

SMALL DEFLECTION STRUCTURAL ANALYSIS

The objectives of the structural analysis are to predict deforma-

tions and stresses for the structure during the orbit. The methods for

calculating the thermal loads on the structure and prestresses in

different members are given in Chapters 2 and 3. Figure 5 shows the

thermal-structural analysis procedure for prestressed structures. In

this chapter small deflection structural analysis using the finite

element method is described.

4.1 Theory

To derive the structural finite element equations for a one-dimen-

sional rod or cable element, a variational principle is employed [4].

Basic equations required to derive finite element equations are explain-

ed in this section.

4.1.1 Stress-Strain Relation

The stress-strain relation for a member with prestress and thermal

strain is shown in Fig. 6 and is given by,

o = E (c - c ) + a (4.1)
0 0
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Fig. 5 Thermal-structural analysis procedure.
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Fig. 6 Stress-strain relation with prestress and prestrain for an
one-dimensional element.
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where a is the element stress, E is the modulus of elasticity, e

is the total strain, e0 is the thermal strain and a0  is the ele-

ment prestress.

4.1.2 Elastic Strain Energy

The elastic strain energy of the element is given by the integral

of the area under the stress-strain curve over the volume of an element,

1 L L
U = 1 f A(a-o 0 ) (C-Eo) dx + f A ao e dx

2 . 0

where A is the cross-sectional area and L is the element length.

Using the stress-strain relation, Eq. (4.1), the strain energy becomes,

AE L L
U = f I (E24_ - 2 e c0) dx + A f ao £dx (4.2)

2 0 0 o

4.1.3 Strain-Displacement Relation

Figure 7 shows a one-dimensional rod or cable element in Cartesian

global XYZ coordinates. The element lies on the local X axis. For

small deflection theory, the strain-displacement relation is given by,

E:=au =U2 -Ul (E - u _ u - ul(4.3)

ax L
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Fig. 7 One-dimensional finite element in local and global coordinates.
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where u1 , u2  are the element nodal displacements in local coordi-

n ates.

4.2 Element Equations

4.2.1 Element Potential Energy

The potential energy is the sum of the elastic strain energy and

potential energy due to external loads.

S= U +V

where ir denotes the total potential energy, U is the elastic strain

energy, and V is the potential energy due to external loads. If P,

and P2  are forces acting on node 1 and 2, respectively, then

V = - P1 ul - P2 U2

Substituting E from Eq. (4.3), the total potential energy

becomes,

2

AE u2-ul L AE L 2
S=" : ) L, dx + - f c dx

2 L 2.

U2-U, 2 L u2-U1 L
AE ( ) f co.dx + A (-) f aodx

L o L

-P1 u1 - P2 U2 (4.4)-
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For a one-dimensional element co is the thermal strain given by,

Eo(x) = a [T(x) - Til (4.5)

where a is the coefficient of thermal expansion, T(x) is the element

temperature distribution, and Ti is the initial temperature at the

given prestress.

4.2.2 Potential Energy Minimization

To derive the element equation, the potential energy (Eq. (4.4)) is

minimized with respect to the nodal displacements ul and u2 :

2 =0 and 0
3 uI U2

or

AE (UlU 2 ) AE f E0 dx + A co + P1
L L o

A- (-ul+u 2 ) =AE f L 0 dx - A o0 + P2
L L o

The above two equations can be written in matrix form as,

=l- 1 odx + A c {o + (4.6)

L U26 P2
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For an isothermal element with constant temperature T, the thermal

strain is,

60 = a (T-Ti) (4.7)

and the above element equations reduce to,

E: AEa (T-Ti) + A {o + (4.8)
L -1U2 -P2

4.3 Analysis Procedure

For a thermal-structural analysis of an orbiting space structure,

the heating analysis and the thermal analysis are first performed to

determine the temperature distribution in the structure. The prestress

analysis is performed to compute element prestresses. Using the temper-

atures and prestresses, element Eqs. (4.8) are formulated and element

matrix transformations from local to global coordinates are made. The

element equations are then assembled to yield the system equations.

Boundary conditions are imposed. Six boundary conditions are specified

to constrain the structure from rigid body motion. The unknown nodal

displacements are then solved, and element stresses are computed using

Eqs. (4.1) and (4.3).

As the structure moves to another orbital position, the heating

loads are recomputed, and the structural analysis is repeated. Such a

sequence of computations is called a quasi-static analysis since dynamic

27



effects are neglected. A computational flowchart for the small deflec-

tion analysis is shown in Fig. 8.
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Fig. 8 Flowchart of small deflection structure analysis technique for
orbiting structures.
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Chapter 5

STRESS STIFFENING STRUCTURAL ANALYSIS

The small deflection (linear) structural analysis technique was de-

scribed in Chapter 4 for cable-stiffened space structures. The assump-

tion of small deflections was made in the strain-displacement relation.

Since cables show nonlinear behavior as described in [15], the large

deflection relation between strain and displacement must be used for the

structural analysis of cable-stiffened large space structures. Using

the large deflection relation between strain and displacements, the

derivation of finite element equations in terms of displacements results

in a nonlinear set of equations. The resulting stiffness matrix and

right-hand side force vector contain displacements, prestress and ther-

mal strain terms. Two solution algorithms for these nonlinear finite

element equations are considered. The two techniques are stress stiff-

ening described in this chapter and large deflection (nonlinear) tech-

nique described in Chapter 6. In the stress stiffening technique, only

two iterations are performed whereas in the large deflection technique

Newton-Raphson iteration is used until convergence is achieved.

stress stiffening refers to changes in element stiffness due to

element initial stress. This effect is also called geometric or initial

stress stiffening. The change in element stiffness is due to the
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presence of prestress and/or thermal strain terms in the stiffness

matrix in contrast to the small deflection analysis where the stiffness

matrix is an array of constants depending only on material properties

and element geometry. The stress stiffening structural analysis is used

because it normally provides a more accurate result than the linear

analysis for cable-stiffened structures. A brief description of stress

stiffening is given in [17]. In this chapter, a derivation of finite

element equations for the stress stiffening analysis is first presented.

A solution method for solving the unknown nodal displacements for an

orbiting structure is then described.

5.1 Theory

The finite element equations for a stress stiffening structural

analysis is derived using energy methods similar to the procedures for

the linear analysis described in Chapter 4.

Figure 9 shows a rod or a cable element in global Cartesian XYZ

coordinates. The strain-nodal displacements relation for large deflec-

tions is given by [18],

U2 -U 1 1 V2 1 2 1 -Wl 2
_ _ + ( ) + (
L 2 L 2 L

or

= e + 1I 2 + 1 2 (5.1)
2 2

where u1, Vi, w1  and u2 , v2 , w2  are nodal displacements in the

elements local xyz directions at nodes 1 and 2, respectively, and e
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Fig. 9 One dimensional rod or cable element in local and global
coordinates.
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denotes axial strain; e and * are rotations in the local x-y and x-z

planes:

U2 -Ul
e -(5.2a)

L

V2 -V1
(5.2b)

L

W2 -Wi
1- (5.2c)

L

5.2 Element Equations

5.2.1 Element Potential Energy

The total potential energy is the sum of the elastic strain energy

and the potential energy due to external forces. By substituting Eq.

(5.1) into the elastic strain energy, Eq. (4.2), the total potential

energy becomes,

LE 11L a
AEL e2 + AEL [(e - 1 L e0dx + ao) 02 + 1 e4
2 2 L E 4

+ AEL [(e L + dx CFO__) ,2 + i1 4] + AEL 2 p2
2 L E 4 4L AE L 2

- AEe L co dx + A ao L e + A f. co 2 dx
2

- P1 ul - P2 u2  (5.3)
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5.2.2 Potential Energy Minimization

Element equations are derived by performing minimization of the

total potential energy, Eq. (5.3), with respect to the nodal dis-

placement components ul . VI , w1, u2 , v2 , and w2 . As an exampl e,

minimization of the total potential energy with respect to ul is,

1Tr -=0

aUl

or

AE AE e AE j AE AE a
- u +-1  - V1 + - W-- U2  -- V2
L L 2 L 2 L L 2

AE4I AE L
AE * - - f L0 dx + A ao + P1  (5.4)
L 2 L

For six nodal displacement components, the element equations are;

[K(u)] {ul = {F}CO + {F} + {P} (5.5)

where [K(u)] is the stiffness matrix which depends on the unknown

nodal displacements, {u} is the unknown nodal displacement vector,

{F) , { F} and {IP are the element force vectors due to thermalaO 0

strain, prestress and the external applied forces, respectively. De-

tails of these element matrices are shown in Appendix A.
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5.3 Analysis Procedure

The finite element Eqs. (5.5) are nonlinear because the element

stiffness matrix depends on the unknown nodal displacements. To solve

these nonlinear equations an iterative technique is used. The stress

stiffening method uses two iterations, [17]. For the first iteration,

all nodal displacement components which appear in the element stiffness

matrix are zero. Nodal displacement components computed in the first

iteration are then used as the approximate solution for the second iter-

ation which gives the stress stiffening result.

The stiffness matrix and load vectors are computed at each iter-

ation. These element matrices are transformed from local to global

coordinates, and the system equations are established. Appropriate

boundary conditions are then imposed, and the unknown nodal displace-

ments are computed. The first iteration nodal displacements are used as

initial displacements to compute final displacements in the second iter-

at ion.

For the analysis of an orbiting space structure, the heating, ther-

mal and prestress analysis are first performed. Displacements at the

first orbital position are computed, based on the given element temper-

atures, prestresses and initial temperatures. With these computed nodal

displacements, the deformed structure is obtained and is used as the

initial structural geometry to compute the structural deformation for

the second orbital position. Prestresses and initial temperatures for

each element are updated. At the second orbital position, the pre-

stresses are the values of the final stresses of the first orbital

position. Initial temperatures take the values of anplied element
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temperatures of the first orbital position. Similar computations are

performed at each specified orbital position. A flowchart showing the

stress stiffening structural analysis for an orbiting structure is given

in Fig. 10.
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Fig. 10 Flowchart Of the stress stiffening structural analysis

for an orbiting space structure.
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Chapter 6

LARGE DEFLECTION STRUCTURAL ANALYSIS

It was stated in Chapter 5 that the assumption of the large deflec-

tion relation between strain and displacement results in nonlinear

finite element equations. One solution algorithm was described in Chap-

ter 5. The second algorithm, the large deflection (nonlinear) technique

is presented in this chapter. Large deflection structural analysis is

normally used whenever the displacements are large enough that the

stiffness matrix based on the initial geometry does not represent the

actual deformed structure. Reference [18] discusses theory and solution

methods for large deflection analysis of structures due to simple load-

ings. Large deflection analysis provides high solution accuracy com-

pared to the small deflection and the stress stiffening analysis for

cable-stiffened structures, where each structural member is prestressed.

Further explanation is presented in [17, 18]. The element equations

obtained from large deflection analysis depend on nodal displacements

leading to a nonlinear set of system equations. This chapter describes

the solution method for the nonlinear equations. An analysis procedure

for solving nodal displacements of the orbiting structure due to thermal

loads is then explained.
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6.1 Theory

The derivation of the finite element equation for large deflection

structural analysis follows the procedures given in Chapter 5. The

element equations are the sane as Eqs. (5.5).

The element Eqs. (5.5) can be written in the form,

fi(e, 0, .) = 0, i = 1, 6 (6.1)

where e is the axial strain; 0 and ' are the rotations in local x-

y and x-z planes, respectively. In large deflection structural

analysis, the Newton-Raphson iteration method is used to solve the above

nonlinear equations. Application of the Newton-Raphson method to

Eqs. (6.1) results in the following matrix equation, [19],

[J] {Au} = {R} (6.2)

where [J] is the Jacobian matrix and {R} is the residual load vec-

tor. The coefficients in the Jacobian matrix are given by,

af.
= 1a (6.3)1ij au.

1

where uj, j = 1,6 are the element nodal displacement components. The

residual load vector is,
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R. = -f. (6.4)
1 1

6.2 Element Equations

To derive the element Eqs. (6.2), Eqs. (6.1) is first written. As

an example, the first equation of Eqs. (6.1) is,

AE AE + AE W -AE AE V AE *- uI + __v 1 + w- -- • u --- •v 2 ---- _wi

L L 2 L 2 L L 2 L 2

L
+LAE f L dx - A o - P, =0

L a

Using Eq. (6.3), the coefficients in the Jacobian matrix are,

af
i AE

aul L

af
J12 E - .

avl L 2

af Ai -AE 4'

awl L 2

- 1. AEJ14=

3u2 L
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afl AE  e
J15 =

av2 L 2

afl AE p
J16 = - = - "

aw2 L 2

and the corresponding residual from Eq. (6.4) is,

02 p_2 AE L
R1 =AEe + AE (+2 + +A --A L odx + Pi2 2 L

Similarly, other coefficients in the Jacobian matrix and residual load

vector can be derived, and the element equations can then be written in

the form,

[j]m {au&l {= {R}O + {R e + ,{ + fR + {R} 1m (6.5)

where [J]m is the Jacobian matrix, {Aul is the vector of nodal

displacement increments, and the superscript m denotes the mth iter-

ation. The right-hand side of the above equation contains residual load

vectors associated with the thermal strain, element prestress, axial

strain, rotational strain and external loads, respectively. The compo-

nents of the Jacobian matrix and the residual load vectors are given in

Appendix B. Once the nodal displacement increment is obtained, the new

displacement vector is computed from,
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m4*1 m mi (.6

{u} = { u + {Au}1 (6.6)

Convergence criteria used is given as,

AUi < tolerance (6.7)

Iuii

where i denotes a typical displacement component. The convergence

tolerance typically used herein is 10-2.

6.3 Analysis Procedure

Element Jacobian matrices and residual load-vectors are computed at

each iteration. Initial nodal displacements are set to zero at the

first iteration. Element Jacobian matrices obtained in local coordin-

ates are then transformed to global coordinates and then system equa-

tions are established. Appropriate boundary conditions are then impos-

ed, and the unknown nodal displacement increments are computed. At each

iteration the displacements are updated using Eqs. (6.6). The iteration

process is terminated when convergence criteria given by Eqs. (6.7) are

met.

For the analysis of an orbiting space structure, the heating,

thermal, and prestress analyses are first performed. Displacements at

the first orbital position are calculated based on the given element

temperatures, prestresses and initial temperatures using the nonlinedr

analysis method discussed earlier. With these computed nodal
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displacements, the deformed structure is obtained and is used as the

initial structural geometry to compute the structural deformation for

the second orbital position. Prestresses and initial temperatures are

updated at each orbital position as discussed in Chapter 5. Nodal dis-

placements and element stresses are computed similarly at each specified

orbital position. A flowchart showing the large deflection structural

analysis for an orbiting structure is shown in Fig. 11.
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Fig. 11 Flowchart of large deflection structural analysis
for an orbiting space structure.
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Chapter 7

VERIFICATION OF STRUCTURAL ANALYSIS METHODS

In the preceding chapters, three structural analysis techniques

were described. The accuracy of the small deflection, stress stiffening

and large deflection analyses are verified in this chapter, neglecting

prestress effects. Two problems with known analytical solutions are

used to verify the analyses. A nonlinear rod-spring system is analyzed

first, and results from the three analysis techniques are compared with

an analytical solution. A large displacement nonlinear analysis of an

elastic cable is performea next, and results are compared with an ana-

lytical solution.

7.1 Nonlinear Rod-Spring System

Figure 12 shows the nonlinear rod-spring system. Node 1 is hinged,

node 3 is fixed, and node 2 can move only in the vertical direction.

For an applied vertical force P, the vertical displacement u at node

2 can be computed from the exact relation [20],

P = ku + AE (L sine-u) [ L -1i (7.1)
L (L sine) 2 + (L sine-u) 2  J
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Fig. 12 Nonlinear rod-sprinq system.
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where k is the spring constant, A, E and L are the cross-sectional

area, the modulus of elasticity and the length of the rod, respective-

ly; 8 is the angle between the rod and the horizontal plane shown in

Fig. 12.

Using the small deflection (linear), stress stiffening and large

displacement (nonlinear) analyses, the displacement u is computed for

different values of the applied force P. Results obtained using these

analyses are compared with the analytical solution in Fig. 13.

For very small deflection (less than 0.25 inches), the displacement

solution obtained from the linear, stress stiffening, and nonlinear ana-

lyses are close together. For larger deflections the three analyses

show a wide difference in results. The nonlinear analysis provides very

accurate displacement predictions for different loads, but the stress

stiffening and linear analyses compare poorly with the analytical solu-

tion. The solution of the nonlinear rod-spring system verifies the

nonlinear analysis technique and shows that linear analysis and stress

stiffening analysis should not be used for such problems.

7.2 Symmetric Elastic Cable

A symmetrical elastic (aluminum) cable is shown in Fig. 14. The

shape of the cable under its own weight neglecting the cable extension

represents a catenary. Dimensions and material properties of the cable

are given in Table 1. The cable is loaded by its own weight and is

subjected to a rise in temperature of 200°F. The analytical solution
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Fig. 13 Comparative displacement for nonlinear rod-spring system
using three analys-is techniques.
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Fig. 14 A symmetric elastic cable.
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Table 1

Dimensions and Material Properties of
an Elastic Cable

GEOMETRY AND
MATERIAL PROPERTY VALUES

SPAN 6000 in.

SAG 600 in.

LENGTH 6157 in.

SPECIFIC WEIGHT .11 lb/in. 3

WEIGHT/UNIT LENGTH .25 lb/in.

CROSS-SECTIONAL AREA 2.5 in. 2

MODULUS OF ELASTICITY 10.0 x 106 psi

COEFFICIENT OF 13.0 x 10-6/F
THERMAL EXPANSION
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for the displacement due to the cable's own weight and temperature

increase is given in [15]. This analytical solution is obtained by

first computing the undeformed shape of the inextensible cable by

using,

Z(X) = H [cosh (m91) - cosh !_g (__ ( X)] (7.2)
mg 2H H 2

S()=H 0 t )
S(X) = -[sinh (M - sinh mg ( - X)] (7.3)

mg 2H H 2

where H is the maximum horizontal component of force in the cable

which is computed from,

sinh(mg!t) = mgLo (7.4)
2H 2H

where mg is the weight of the cable per unit length; X, Z and S

are the horizontal distance, vertical distance and cable length, respec-

tively, (Fig. 14). The length of the undeforned cable is Lo, and I is

the span.

The vertical deflection, including extension, due to the combined

loading of the cable's weight and the temperature increase AT, with

respect to the undeformed shape Z(X), Eq. (7.2) is,

w = (mgf•T )[ h X ( X)] (7.5)
2H (1 -li) P
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where IT is the positive root of,

3 2X 2

Ni- (2 + 0 + -') W + (1 + 20 + )fl- 0:0 (7.6)
24 12

where

0 = a IATI Lt / (H Le/ E A)

X2 = (,g,)2 * t/ (H Le/E A)
H

Lt = [1 + m_•gM) 12]

Le = k [1 + 8 (d) 2]

a is the coefficient of thermal expansion, and d is the dianeter of

the cable.

The finite element solution of the cable problem is obtained using

the nonlinear structural analysis technique. The geometric syimetry of

the problem is used where only half of the cable is modeled for the

analysis. The finite element model includes 25 cable elements and 26

nodes. The nonlinear technique using Newton-Raphson iteration method

(Chap. 6), converges in five interations.

The vertical deflections for the analytical and finite element

solution are compared in Fig. 15. The nonlinear finite element solution

provides very accurate results with a maximum difference of 0.05

percent.

The results of these two problems verify that the large deflection
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Fig. 15 Comparative deflections for cable loaded by its own weight
and subjected to a temperature rise.
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(nonlinear) finite element analysis can be used to analyze cable deflec-

tion accurately. The linear and stress stiffening analyses techniques

may not provide results of comparable accuracy for such nonlinear prob-

1 ems.

The two problems analyzed did not consider prestress effects that

characterize cable applications in large space structures. In the next

chapter, cable-stiffened orbiting structures will be analyzed. The

three analysis methods will be evaluated for these applications includ-

ing prestress effects.
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Chapter 8

THERMAL-STRUCTURAL ANALYSIS OF CABLE-STIFFENED
ORBITING SPACE STRUCTURES

This chapter is devoted to the analysis of cable-stiffened orbiting

space structures. Small deflection (linear), stress stiffening and

large deflection (nonlinear) analyses procedures were described in

Chapters 4, 5, and 6, respectively. Chapter 7 demonstrates for two

structures without prestress, that the nonlinear analysis provides more

accurate displacements than the stress stiffening and the linear

analysis procedures. It was also verified that the nonlinear analysis

provides very accurate displacements for a thermal load.

Thermal-structural analysis of prestressed cable-stiffened space

structures is described in this chapter. Comparative analyses for two

typical cable-stiffened structures are presented. The analyses were

performed using linear, stress stiffening and nonlinear techniques, and

the results are compared in tables and figures. The analyses are

performed at different structural prestress levels to study the effect

of prestress.

8.1 Simplified Two-Dimensional Pretensioned Cable System

A simplified two-dimensional pretensioned cable system is shown in

Fig. 16. The cables which form the parabolic shape are called radial
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NODE 1 2 3 4 5

X 3.37 10.1 23.8 38.0 52.7

Y -9.6 -9.4 -8.9 -6.8 -3.7

(DIMENSIONS ARE IN METERS)

TYPICAL RADIAL CABLE
TYPICAL SUPPORT

35.6

122.0

Fig. 16 Simplified two-dimensional pretensioned cable system.
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cables, and the cables which support these are called the support

cables. All cables are made of graphite epoxy, where the material prop-

erties are given in Table 2. The finite element model of the structure

consists of 21 elements and 13 nodes.

8.1.1 Heating and Thermal Analysis

The cable system is assumed to be in a geosynchronous earth-facing

orbit as shown in Fig. 17. Heating histories for two typical structural

members are shown in Fig. 18. The member incident heating is maximum

when the member is perpendicular to the solar vector. The member

heating drops when the member is either parallel to the solar vector or

in the earth's shadow. The heating rate varies from 1200 W/me to 10

W/i for a typical member during the orbit.

Member heat loads are used to compute member temperatures in the

thermal analysis. Isothermal elements are used because members are made

of graphite epoxy which have very low thermal conductivity. Figure 19

shows temperature histories of two typical members. The temperature

histories follow the patterns of the member heating histories because

the members change orientation slowly with respect to the solar flux.

The member's low mass and high surface emissivity along with the slow

change in heating produce member temperatures very close to the radi-

ation equilibriuu temperatures throughout the orbit. When the structure

enters the earth's shadow, member temperatures drop suddenly and ap-

proach much lower radiation equilibriun temperatures. When the struc-

ture leaves the earth's shadow, member temperatures rise abruptly due to
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Table 2

Properties of Simplified Two-Dimensional
Pretensioned Cable System

Radial cable 3.09 mm

diameter

Support cable 1.21 mm

di ameter

Modulus of 1.23 x 1011 N/m2

elasticity

Coefficient of 5.40 x 10- 7 1/K

thermal expansion

Density 1650.0 kg/m3

Specific heat 879.2 J/kg-K

Emmissivity 0.84

Absorbtivity 0.916
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Fig. 17 Orientation of simplified pretensioned cable system in
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Fig. 18 Heating histories of typical members of simplified
pretensioned cable system.
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Fig. 19 Temperature histories of typical members of simplified
pretensioned cable system.
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the abrupt change of heat load. The range of member temperatures during

an entire orbit is from 320 K to 90 K. The member temperatures at the

different orbital positions are used in the structural analysis to com-

pute displacements and stresses.

8.1.2 Prestress Analysis

Element prestresses are computed using the prestress analysis pro-

cedure described in Chapter 3. Geometric synmetry of the structure is

used, and a tensile force of 452 N is specified for element number one

(see Fig. 20). The prestress program is then used to compute the other

element forces and stresses. Figure 20 shows the computed forces and

prestresses for each member of the synmetric structure.

8.1.3 Structural Analysis

Linear, stress stiffening, and nonlinear analyses are used for com-

putation of structural deformations and cable stresses. Element temper-

atures and element prestresses calculated earlier are used as input data

in these analyses. Initial member temperatures of 294 K are assumed.

Analyses are performed at orbital positions for the orbit as, described

in the analysis procedures in Chapters 4, 5, and 6. The three analyses

predict similar patterns of nodal displacements and member stresses.

Only the results of the nonlinear analysis is presented in the fiyures.

Deflection comparisons for the three analyses are presented in tabular

form in the next section.

Figure 21 shows the displacement histories of two typical nodes.

The nodal displacement history for a typical node follows the
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ELEMENT FORCE PRESTRESS
NO. (N) (MPa)

1 452.0 60.2

2 173.3 23.1

3 150.2 - 20.0

4 134.6 17.9

5 134.1 17.8

6 133.6 17.8

7 284.5 245.4

8 25.8 22.2

9 21.5 18.5

10 1.0 0.9

11 4.0 3.4

2I

Fig. 20 Member prestresses for symmetric simplified pretensioned
cable system.
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Fig. 21 Displacement histories for two typical nodes on simplified
pretensioned cable system.
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temperature histories of the connected elements (not shown). Figure 22

shows the stress histories for two typical members. The stress

variation during the orbit is small compared to the prestress level of

the member. For a typical member, the stress variation is 11 percent

from its prestress value. The maximum stress change occurs during

passage through the earth's shadow.

Greatly exaggerated deformed shapes of the structure at the 0, 90,

and 130 degrees orbital positions are shown in Fig. 23. The deformed

shape of the structure is in equilibriun and members are in tension.

The deflection of the parabolic surface is not symmetric because the

symmetrical elements have unequal thermal loads at different orbital

positions. Maximum displacements are in the Z direction. At the 90

degrees orbital position, a maximum displacement of 11.5 mm (shown in

Fig. 23) occurs at the node nearest to the support. A maximum Z-

displacement of 20 mm occurs at the same node during passage through the

earth shadow.

8.1.4 Comparative Deformations

To compare the three structural analysis methods, the thermal-

structural analysis is performed at three prestress levels using the

linear, stress stiffening and nonlinear-analysis techniques. The first

prestress level is determined by specifying a force of 45.2 N for member

number one (see Fig. 20). Similarly, the second and the third prestress

levels are determined by specifying forces of 452 N and 4520 N, respec-

tively. The second prestress level is close to the design prestress
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Fig. 22 Stress histories for two typical members of t'he simplified
pretensioned cable system.
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used by NASA for structures such as the hoop column antenna [1]. The

third prestress level is a hypothetical prestress level assumed for

evaluation of the three structural analysis techniques. At this pre-

stress some of the members may exceed design allowable stresses in ten-

sion.

Comparative deflections for node five (see Fig. 16) obtained from

the three analysis techniques at the orbital positions of 0, 90, and 187

degrees are shown in Table 3. For these prestress levels, the linear

analysis overestimates the deflection compared to the stress stiffening

and nonlinear analysis. With increasing prestress, the linear analysis

results remain almost unchanged, but the stress stiffening and nonlinear

analysis results vary significantly. The latter two analyses predict

relatively small deflections at higher prestress.

For the second prestress level at the 90 degrees orbital position,

the linear and stress stiffening analyses predict 15 percent and 0.31

percent higher displacements than the nonlinear analysis, respectively.

As prestress increases, the error in the linear analysis increase and

results are not acceptable. The errors in the stress stiffening analy-

sis increase also but remain within acceptable levels. The stress

stiffening analysis can be used at NASA design values of prestresses

with small error.

8.2 Three-Dimensional Prestressed Hoop Column Antenna

A three-dimensional hoop column antenna is shown in Fig. 24.

Dimensions of the finite element model are shown on the front and top
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Table 3

Simplified Pretensioned Cable System
(Figure 16) Z-Deflection Comparison (mm)

ORBITAL 0 90 187POSITION(DEGREES)

PRESTRESS LEVEL ONE (F* = 45.2 N)

LINEAR -. 6590 13.40 22.97
ANALYSIS

STRESS -. 6592 12.90 22.80
STIFFENING
ANALYSIS

NONLINEAR -. 6536 13.10 22.80
ANALYSIS

PRESTRESS LEVEL TWO (F 1 = 452.0 N)

LINEAR -. 6578 13.40 22.97
ANALYSIS

STRESS -. 6332 11.69 20.98
STIFFENING
ANALYSIS

NONLINEAR -. 6097 11.66 20.95
ANALYSIS

PRESTRESS LEVEL THREE (F 1 = 4520.0 N)

LINEAR -. 6461 13.41 22.98
ANALYSIS

STRESS -. 4769 6.738 11.87
STIFFENING
ANALYSIS

NONLINEAR -. 3831 6.668 11.78
ANALYSIS

*F1  is pretension in member one (see Fig. 20).
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Fig. 24 Three-dimensional prestressed hoop column antenna.
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views in Figs. 25 and 26. Tables 4 and 5 provide member cross-sectional

areas and material properties. The finite element model consists of 123

nodes and 387 elements. The hoop and column are represented by rod

elements, and cables are represented by cable elements. In addition,

192 fictitious cable elements were added for structure stability. The

fictitious cable elements have very low (106 N/m2 ) modulus of elasticity

compared to the other elements of the structure (1011 N/m2) and have

zero coefficient of thermal expansion.

The structure is in a geosynchronous orbit oriented as shown in

Fig. 27 with the antenna surface pointing towards the earth. The analy-

sis of the three-dimensional prestressed hoop column antenna is perform-

ed similar to the simplified two-dimensional pretensioned cable system

described in the previous section. The heating analysis and thermal

analysis are performed at different orbital positions up to orbital

angle of 200 degrees. A temperature variation from 310 K to 90 K is

observed for a typical member during passage through the earth shadow.

8.2.1 Prestress Analysis

The structure's geometric symmetry is used in the prestress ana-

lysis. Symmetrical elements and nodes are identified and grouped in

element and nodal groups. Six member forces are specified for the

structure, and the prestress program is used to compute other member

forces and stresses. These computed stresses are used as the member

prestresses in the structural analysis. The fictitious elements have no

prestresses. Figure 28 shows member prestresses and forces in a typical

section of the structure.
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Fig. 25 Front section of the hoop column antenna.
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Fig. 26 Top view of the finite element model of the prestressed hoop
column antenna.
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Table 4

Hoop Column Antenna Cross-Sectional
Areas and Materials

STRUCTURAL AREA (m2 ) MATERIAL

MEMBER x 10-6

CENTRAL COLUMN 237.6 GRAPHITE

(HOLLOW TUBE) EPOXY-1

HOOP 266.0 GRAPHITE

(HOLLOW TUBE) EPOXY-2

OUTER SUPPORT CABLE, 27.3 QUARTZ

COLUMN TO HOOP
(+ Z SIDE)

OUTER SUPPORT CABLE, 4.63 GRAPHITE

COLUMN TO HOOP EPOXY-I

(- Z SIDE)

RADIAL CABLE, 7.49 GRAPHITE

RING TO RING EPOXY-1

SUPPORT CABLE 1.15 GRAPHITE

COLUMN TO RING EPOXY-1

RING CABLE 0.297 GRAPHITE
EPOXY-1
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Table 5

Material Properties of Hoop Column Antenna

GRAPHITE GRAPHITE QUARTZ

EPOXY-1 EPOXY-2

Modulus of elasticity 12.30 7.30 5.25

x10 10 N/m2

Coefficient of thermal -7.2 7.2 5.4

expansion

x 10- 7 /K

Density 1.60 1.93 1.74

x10 3 kg/m3

Specific heat 879.2 879.2 840.0

Joule/kg-K

Emissivity 0.84 0.84 0.93

Absorbtivity 0.916 0.916 0.916
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Fig. 27 Orientation of prestressed hoop column antenna in earth
orbit.
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ELEMENT FORCE PRESTRESS
NO. (N) (MPa)

1 121.7 16.2

2 134.1 17.8

3 154.2 20.5

4 189.1 25.2

5 452.0 60.2

6 37.1 32.0

7 22.2 19.1

8 33.2 28.6

9 26.2 226.5
10 140.0 30.2

11 407.5 14.8

12 -5968.4 -25.1

13 -6681.1 -28.1

14 -3291.3 -12.3

15 25.0 84.0

16 20.0 67.2

17 15.0 50.4

18 10.0 33.62

Fig. 28 Member prestresses for prestressed hoop column antenna.
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8.2.2 Structural Analysis

Using temperatures and prestresses, the linear, stress stiffening

and nonlinear analyses are performed to compute nodal deflections and

member stresses at different orbital positions. The three analyses

predict similar patterns of nodal displacements and member stresses.

The results of the nonlinear analysis is presented in the figures.

Deflection comparisons for the analysis are presented in tabular form in

the next section. The hoop and antenna of the structure are in compres-

sion at all times during the orbit. Buckling of these members has not

been considered.

Figure 29 shows the Z-displacement histories for two typical nodes

on the antenna's surface. During orbit, points on the antenna's surface

move toward and away from the earth, i.e. ± Z displacements take place.

A maximum Z deflection of 20 mm occurs at a node on the antenna's sur-

face nearest to the hoop in the earth's shadow. A significant displace-

ment of 15 mm occurs at the sane node at 90 degrees orbital position.

The Z-deflections of the antenna surface at three orbital positions are

shown in Fig. 30. Figure 31 shows the Z deflections of 4 panels at the

90 degree orbital position. Figure 32 shows displacement contours on

the antenna's surface. The figures show that antenna surfaces near the

hoop have maximum deflection. The displacements are not exactly axisyn-

metric as they vary from panel A to U (Fig. 31). Displacements in the

central region of the antenna's surface are small. Stress variation for

a typical element is ±8 percent from a prestress value of 60 MPa.
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Fig. 29 Displacement histories for two typical nodes on the prestressed
hoop column antenna.
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A = 10.0 mm
B = 9.0mm
C = 4.0rmm

Fig. 32 Approximate displacement contours on antenna surface for
hoop column antenna at 90 degrees orbital position.
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8.2.3 Comparative Deformations

The linear, stress stiffening and nonlinear structural analyses

are performed at three typical prestress levels. Member number five

(see Fig. 28) has a force of 226 N for prestress level one, 452 N for

prestress level two and 4520 N for prestress level three. The third

prestress level is a hypothetical prestress level assumed for evaluation

of the three structural analysis techniques. At this prestress some of

the members may exceed design allowable stresses in tension or compres-

sion. Deflections of a node (number two, Fig. 28) at these prestress

levels for the structural analysis techniques are given in Taole 6 at 0,

90, and 187 degrees orbital positions.

For all three prestress levels, the linear analysis overestimates

the deflection compared to the stress stiffening and nonlinear analyses.

With increasing prestress, the linear analysis results remain almost

unchanged, but the stress stiffening and nonlinear analysis results

change significantly, predicting relatively small deflections at higher

prestress. In other words, the three analyses produce similar results

at small prestress levels, but at higher prestresses the differences

between the results from the three techniques becomes greater. For

instance, at the zero degree orbital position and at prestress level

three, the linear and stress stiffening analysis predict 82 percent and

23 percent higher displacements than the nonlinear analysis.

At NASA design prestresses (level two), results from the three ana-

lysis techniques differ significantly. The linear analysis predicts 11

percent, 20.7 percent, and 22.7 percent more deflection than the non-

linear analysis at the three orbital positions. Tht stress stiffening
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Table 6

Prestressed Hoop Column Antenna (Figure 28)
Z-Deflection Comparison (mm)

ORBITAL 0 90 187
POSITION
(DEGREES)

PRESTRESS LEVEL ONE (F5 = 226.0 N)

LINEAR 11.62 -11.40 -24.03
ANALYSIS

STRESS 11.31 -10.40 -21.68
STIFFENING
ANALYSIS

NONLINEAR 10.98 -10.37 -21.66
ANALYSIS

PRESTRESS LEVEL TWO (F 5 = 452.0 N)

LINEAR 11.62 -11.40 -24.03
ANALYSIS

STRESS 11.01 - 9.49 -19.60
STIFFENING
ANALYSIS

NONLINEAR 10.45 - 9.44 -19.58
ANALYSIS

PRESTRESS LEVEL THREE (F 5 = 4520.0 N)

LINEAR 11.65 -11.37 -24.00
ANALYSIS

STRESS 7.89 - 2.15 - 2.97
STIFFENING
ANALYSIS

NONLINEAR 6.39 - 2.25 - 2.90
ANALYSIS

*F5 is pretension in member five (see Fig. 28).
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analysis predicts 5 percent, 0.5 percent, and 0.1 percent more deflec-

tion than the nonlinear analysis at these positions. These results show

that at the NASA design prestresses, a stress stiffening analysis can be

used instead of a nonlinear analysis to predict deflections with

acceptable accuracy.

Comparison of CPU times gives a ratio of 1:11:16 for linear, stress

stiffening, and nonlinear analysis, respectively. Although the linear

analysis is efficient in computer time, the results of this analysis may

not have acceptable accuracy. The nonlinear analysis takes more com-

puter time but the results are always accurate and can be used with

confidence for all prestress levels. A stress stiffening analysis is

not as expensive as a nonlinear analysis and can give, depending on the

prestress, results of acceptable accuracy. Considering these facts the

use of the stress stiffening method can be recommended for structural

analysis of the hoop column antenna at NASA design prestresses. The

nonlinear analysis method is recommended as a more general (and more

expensive) technique for all prestress levels.
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Chapter 9

CONCLUDING REMARKS

Finite element thermal-structural analysis of cable-stiffened space

structures is presented. Heating and thermal analysis for orbiting

space structures is first discussed. Determination of cable prestresses

is then described. Analysis of structural deformations and stresses are

performed using small displacement linear, stress stiffening, and large

displacement nonlinear techniques.

To analyze a cable-stiffened space structure, the structural sur-

face heating history is first computed. The thermal analysis is then

performed to compute the structural temperature distribution. A pre-

stress analysis is also performed to determine the structural prestress-

es. The structural temperature distribution and prestresses are used in

the structural analysis for computation of deformations and stresses.

To verify the three techniques used in the structural analysis, two

examples with analytical solutions are employed. A nonlinear rod-spring

system subjected to an external force is first used to assess the accu-

racy of the three finite element structural analyses. The linear analy-

sis yields a fair result for small deflections. Better accuracy is

obtained by using the stress stiffening analysis while the most accurate

solution is produced by the large displacement analysis. A cable loaded

by its own weight and subjected to a uniform temperature change is used

to further verify the accuracy of the large displacement analysis.
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The thermal-structural analysis of a prestressed two-dimensional

cable system and a three-dimensional hoop column antenna are performed.

The variation of member stress due to thermal effects during the orbit

is small compared to the member prestress. The effect of member pre-

stress levels on the accuracy of the analysis techniques is evaluated

using comparisons of structural deformations. Finite element analyses

for three prestress levels were performed. At low prestresses, the

three analysis predict similar deformations. With increasing prestress

level, deformations obtained from the linear analysis remain almost

unchanged, whereas a large change in deformations is predicted by the

stress stiffening and large displacement analyses. Although the linear

analysis is efficient in computer time, the results may not have accept-

able accuracy. The large displacement analysis takes more computer

time, but the results are always accurate and can be used with confi-

dence for all prestress levels. A stress stiffening analysis is not as

expensive as a large displacement analysis and it can give, depending on

the prestress, results of acceptable accuracy. The stress stiffening

method can be recommended for structural analysis of the hoop column

antenna at NASA design prestresses.

The large displacement analysis technique is recommended as a gen-

eral (and more expensive) technique for all prestress levels. The re-

sults have shown that accuracy in predicting the deformation and stress

for cable stiffened structures strongly depends on the prestress. The

large displacement analysis technique produced accurate results over a

wide range of prestress and is recommended as a general analysis
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approach for thermal-structural analysis of cable-stiffened space struc-

t ures.
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APPENDIX A

FINITE ELEMENT MATRICES FOR STRESS STIFFENING STRUCTURAL ANALYSIS

The finite element equations shown in Eq. (5.5) for the stress

stiffening structural analysis have the form,

U1  -.1 1 P1
AE vi 0 0 0

[K] w, = AEa (T-Ti) 0 + Aao 0 + 0 (A.1)
L u2  1 1 -1 P2

V2 0 0 0
W2 0 0 0

where LK] is a syimetric matrix in which the coefficients are,

I,12= -K14 = K4 = 1

'~1ý2 = ý 15 = K45 2

K 3 = -K,6 K46

2

K22 = (25 =T5 5_1 [a (T-Ti) +0+2 (A. 2 )
2 E 2

K = -K6 = 6 6

4

K33  3 6 =K6 6  [a (T-Ti) +-+
1 -2 E 2
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2

4

The first term on the right-hand side of the above equation denotes

the element nodal force vector associated with the thermal load. Iso-

thermal elements were used in the thermal analysis so the element tem-

perature T is constant for the element.
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APPENDIX B

FINITE ELEMENT MATRICES FOR LARGE DEFLECTION STRUCTURAL ANALYSIS

Components of the element matrices shown in eq. (6.5) is presented

here. The element equations can be written in the form,

AUl, -1v A• eO Ri PI

AE Avl|0 0 R2 0
17 A-J aW, AEa (T-Ti) + ua + R3 + 0 (B.1)

L A u2 1 1-e R42A V20 U0 1

AW21 1ý R6 e ,* 0

where components of symmetric matrix [J] are given by

ill = _j 4 = 1

J12 = -Jl 5 J45 =-24 = e

J13 = Jl 6 =J4*6 = -J 3 4~ =

J2 2 = -1j2 5 =J 5 5 = [e - a (T-Ti) +-G + 3 62 + (. 2 )

E 2 2

'-2 3 = -J26 ='56 = eP

-J.6 0  3 +02
-J3 :3 6 =[e -a (T-T.) + - + - q+2

E 2 2

The fourth vector on the right-hand side of the above equation is
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associated witn the rotational strain and the components are given by,

e2  *2
R,=_ R4 = +

2 2

R2 -5 = [e - a (T-Ti) + 1 + 3 + •
E 2 2

R3  : - = [e - a (T-Ti) + "I + *3 +

E 2 2

Thermal strain terms in the above equations have been replaced by

Eq. (4.7). Isothermal elements were used in the thermal analysis so the

element temperature T is constant for the element.
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LIST OF SYMBOLS

as Surface absorbtivity for solar radiation

ae Surface absorbtivity for earth radiation

A Cross-sectional area

AF Solar albedo factor

Aq Incident heating area

Ar Element radiation area

[IB] Matrix containing direction cosines of structural member

[BM] Modified form of [B] matrix after imposing known
member forces

c Specific heat

d Dianeter

e Axial strain

E Modulus of elasticity

F View factor

Fx, Fy, Fz Member force components in Cartesian coordinates

{F} Unknown member force vector

{F}E Finite element force vector due to thermal strain
0

{F}a Finite element force vector due to prestress
0

g Acceleration due to gravity

H Horizontal component of force in cable

j Total number of equations for prestress analysis

(J] Finite element Jacobian matrix

k Thermal conductivity, spring constant
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LIST OF SYMBOLS - Continued

[K] Finite element stiffness matrix

k Length

L Finite element length

m Mass, iteration number

{P} Unknown member force vector

P1 Force on node 1

P2 Force on node 2

q Total incident heat load

qa Earth reflected solar heating

qe Earth emitted heating

qs Incident solar heating

{k} Residual load vector

S Cable length

T Element temperature

Ti Initial element temperature

u1, U2 Local x-displacement components

U Elastic strain energy

{u} Unknown nodal displacement vector

{Au} Unknown nodal displacement increment vector

v1 , v2  Local y-displacement components

V Volune, potential energy due to external loads

w1 , W2 Local z-displacement components

w Global z-displacement component

x, y, z Cartesian coordinates

a Coefficient of thermal expansion, orbital position
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LIST OF SYMBULS - Concluded

£ Total strain

£ Thermal strain
0
8 Element rotation in local x-y plane

iTTotal potential energy

4 p Density

a Element stress

a Element prestress0

4) Element rotation in local x-z plane
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